
Published on LabJack (https://labjack.com)

Home > Support > Datasheets > T-Series Datasheet > 25.0 Lua Scripting

25.0 Lua Scripting [T-Series Datasheet]
Log in or register to post comments

Lua Scripting Overview

T-Series devices can execute Lua code to allow independent operation. A Lua script can be used
to collect data without a host computer or be used to perform complex tasks producing simple
results that a host can read. For a good overview on the capabilities of scripting, see this
LabJack Lua blog post.

Getting Started

1. Connect your device to your computer, launch Kipling, and navigate to the Lua Script
Debugger tab.

19 May 2019

https://labjack.com
https://labjack.com/
https://labjack.com/support
https://labjack.com/support/datasheets
https://labjack.com/support/datasheets/t-series
https://labjack.com/user/login?destination=node/3148%23comment-form
https://labjack.com/user/register?destination=node/3148%23comment-form
https://labjack.com/blog/key-advantages-t7-lua-scripting
https://labjack.com/support/software/applications/t-series/kipling/lua-scripting

2. Open the "Get Device Temperature" example and click the Run button. The console should
show the current device temperature. Now click the Stop button.

3. Try out some other examples.

Running a script when the device powers up

A T-Series device can be configured to run a script when it powers on or resets. Typically you
should test scripts for a while with the Run/Stop buttons while viewing the debug output in the
console. Then once everything is working correctly, enable the script at startup and close Kipling.

To enable the script at startup:

1. Click Save Script to Flash.

19 May 2019

https://labjack.com/sites/default/files/lua_examples/lua_device_temperature.jpeg
https://labjack.com/support/software/examples/lua-scripting

2. Click Enable Script at Startup. Now when the device is powered on or reset, it will run your
script.

3. After power cycling the device, if it becomes un-usable and the COMM/Status lights are
constantly blinking the Lua Script is likely causing the device to enter an invalid state. The device
can be fixed by connecting a jumper wire between the SPC terminal and either FIO0 or FIO4, see
the SPC section of the datasheet for more details.

A short video tutorial describing how to do this is available on the Screen Casting and Lua Script
Tutorials news post.

Learning more about Lua

Learning Lua is very easy. There are good tutorials on Lua.org as well as on several other
independent sites. If you are familiar with the basics of programming, such as loops and
functions, then you should be able to get going just by looking at the examples.

Lua for T-Series Devices

Try to keep names short. String length directly affects execution speed and code size.

Use local variables instead of global variables (it's faster and less error-prone). For example, use:

local a = 10

instead of:

a = 10

You can also assign a function to a local for further optimization:

local locW = MB.W
locW(2003, 0, 1) --Write to address 2003

Lua supports multi-return. Here, both table and error are returned values:

table, error = MB.RA(Address, dataType, nValues)

Freeing Lua memory

Since Lua occupies system RAM, it's good to clean up a Lua script when it's no longer needed.
When a Lua script ends, by default it does not free memory used by the Lua. The following
methods clean up Lua memory:

Press the stop button in the Lua script tab in Kipling
Write 0 to LUA_RUN
Write 0 to LUA_RUN as the last command of your Lua script

19 May 2019

https://labjack.com/support/datasheets/t-series/spc
https://labjack.com/news/screen-casting-and-lua-script-tutorials
https://www.lua.org/
https://labjack.com/support/software/examples/lua-scripting
https://www.lua.org/pil/4.2.html

For more memory cleaning options, see the system RAM section.

Limitations of Lua on T-Series Devices

Lua on the T4 and T7 has several limitations:

Speed: Maximum data rates can only be achieved with a host computer. Lua can not handle as
much data, but is not limited by the communication overhead that a host computer is. The lack of
overhead means that Lua can respond more quickly. Several benchmarking scripts are available
in the Lua example set. The analog input benchmark runs at about 12.5kHz. The DIO benchmark
runs at about 16kHz.

Data Types: On T-Series devices, Lua's only numeric data type is IEEE 754 single precision
(float). This is more important than it sounds. Here is a good article on floating point numbers and
their pitfalls: Floating Point Numbers. The single precision data type means that working with 32-
bit values requires extra consideration. See the Working with 32-bit Values section below.

Script size: The T4 and T7 have 64 kBytes of RAM available. The Lua virtual machine requires
about 25 kBytes. Script code adds memory requirements from there. When memory starts to get
full, there are two places that are likely to throw errors:

The first is when a Lua script is loaded and started, but has not yet started running. When a
script is started, the source code is transferred to the device and that code is compiled into
byte code. Memory for the compilation process can be freed up by reducing comments and
the lengths of variables and functions.
The second place memory errors can occur is while the script is running. Memory can be
freed up using the collectgarbage function. Collecting prevents garbage from building up as
much. If more memory is still needed, the script needs to be simplified or shrunk.

Notice: From a practical standpoint, Lua Scripts will start becoming too long and throwing out-of-
ram errors after around 150 lines (depending on how long each line of code is). Once this
limitation is encountered, there are a few tricks that can be used to implement additional
features. They all involve making your code less readable but will assist in implementing
additional features.

1. Remove any comments from your code as these consume precious RAM.
2. Edit the lua script file using an editor outside of Kipling and upload a minified version of the

script instead of the full script file. The suggested tool to use for minifying Lua Scripts is
here: https://mothereff.in/lua-minifier.

Lua libraries

Most of the Lua 5.1 libraries are available, with the exception of functions that rely on a host
operating systems, such as Time and Networking.

There are some LabJack-specific libraries:

19 May 2019

https://labjack.com/support/datasheets/t-series/hardware-overview/ram
https://labjack.com/support/software/examples/lua-scripting
http://www.cprogramming.com/tutorial/floating_point/understanding_floating_point_representation.html
#32-bit
http://luatut.com/collectgarbage.html
https://mothereff.in/lua-minifier

I2C Library: Provides functions which simplify and reduce the memory requirements of
scripts that use I2C.
Bit Library: Provides bitwise functions such as AND, OR, NOR, and XOR.
LabJack Library: Provides control of script timing and access hardware features of the
LabJack device.

Passing data into/out of Lua

User RAM consists of a list of Modbus addresses where data can be sent to and read from a Lua
script. Lua writes to the Modbus registers, and then a host device can read that information.

There are a total of 200 registers of pre-allocated RAM, which is split into several groups so that
users may access it conveniently with different data types.

Use the following USER_RAM registers to store information:

User RAM Registers

Name Start
Address

Type Access

 USER_RAM#(0:39)_F32 Generic RAM registers.
Useful for passing data between a host computer and a Lua
script. Will not return an error if alternate data types are used.

46000 FLOAT32 R/W

 USER_RAM#(0:9)_I32 Generic RAM registers.
Useful for passing data between a host computer and a Lua
script. Will not return an error if alternate data types are used.

46080 INT32 R/W

 USER_RAM#(0:39)_U32 Generic RAM registers.
Useful for passing data between a host computer and a Lua
script. Will not return an error if alternate data types are used.

46100 UINT32 R/W

 USER_RAM#(0:19)_U16 Generic RAM registers.
Useful for passing data between a host computer and a Lua
script. Will not return an error if alternate data types are used.

46180 UINT16 R/W

&print=true

USER_RAM example script:

while true do
 if LJ.CheckInterval(0) then
 Enable = MB.R(46000, 3) --host may disable portion of the script
 if Enable >= 1 then
 val = val + 1
 print("New value:", val)

19 May 2019

https://labjack.com/support/datasheets/t-series/scripting/I2C-Library
https://labjack.com/support/datasheets/t-series/scripting/bit-Library
https://labjack.com/support/datasheets/t-series/communication/LabJack-Library

 MB.W(46002, 3, val) --provide a new value to host
 end
 end
end

There is also a more advanced system for passing data to/from a Lua script referred to as FIFO
buffers. These buffers are useful if you want to send an array of information in sequence to/from a
Lua script. Usually 2 buffers are used for each endpoint, one buffer dedicated for each
communication direction (read and write). For example, a host may write new data for the Lua
script into FIFO0, then once the script reads the data out of that buffer, it responds by writing data
into FIFO1, and then the host may read the data out of FIFO1.

User RAM FIFO Registers - Advanced

Name Start
Address

Type Access

 USER_RAM_FIFO#(0:3)_DATA_U16 Generic
FIFO buffer. Useful for passing ORDERED or SEQUENTIAL
data between various endpoints, such as between a host and a
Lua script. Use up to 4 FIFO buffers simultaneously->1 of each
data type, all 4 different data types, or a mixture. e.g.
FIFO0_DATA_U16 points to the same memory as other FIFO0
registers, such that there are a total of 4 memory blocks:
FIFO0, FIFO1, FIFO2 and FIFO3. It is possible to write into a
FIFO buffer using a different datatype than is being used to
read out of it. This register is a buffer. Underrun behavior -
throws an error.

47000 UINT16 R/W

 USER_RAM_FIFO#(0:3)_DATA_U32 Generic
FIFO buffer. Useful for passing ORDERED or SEQUENTIAL
data between various endpoints, such as between a host and a
Lua script. Use up to 4 FIFO buffers simultaneously->1 of each
data type, all 4 different data types, or a mixture. e.g.
FIFO0_DATA_U16 points to the same memory as other FIFO0
registers, such that there are a total of 4 memory blocks:
FIFO0, FIFO1, FIFO2 and FIFO3. It is possible to write into a
FIFO buffer using a different datatype than is being used to
read out of it. This register is a buffer. Underrun behavior -
throws an error.

47010 UINT32 R/W

 USER_RAM_FIFO#(0:3)_DATA_I32 Generic FIFO
buffer. Useful for passing ORDERED or SEQUENTIAL data
between various endpoints, such as between a host and a Lua
script. Use up to 4 FIFO buffers simultaneously->1 of each data
type, all 4 different data types, or a mixture. e.g.
FIFO0_DATA_U16 points to the same memory as other FIFO0
registers, such that there are a total of 4 memory blocks:
FIFO0, FIFO1, FIFO2 and FIFO3. It is possible to write into a

47020 INT32 R/W

19 May 2019

FIFO buffer using a different datatype than is being used to
read out of it. This register is a buffer. Underrun behavior -
throws an error.

 USER_RAM_FIFO#(0:3)_DATA_F32 Generic FIFO
buffer. Useful for passing ORDERED or SEQUENTIAL data
between various endpoints, such as between a host and a Lua
script. Use up to 4 FIFO buffers simultaneously->1 of each data
type, all 4 different data types, or a mixture. e.g.
FIFO0_DATA_U16 points to the same memory as other FIFO0
registers, such that there are a total of 4 memory blocks:
FIFO0, FIFO1, FIFO2 and FIFO3. It is possible to write into a
FIFO buffer using a different datatype than is being used to
read out of it. This register is a buffer. Underrun behavior -
throws an error.

47030 FLOAT32 R/W

 USER_RAM_FIFO#(0:3)_ALLOCATE_NUM_BYTES
 Allocate memory for a FIFO buffer. Number of bytes should
be sufficient to store users max transfer array size. Note that
FLOAT32, INT32, and UINT32 require 4 bytes per value, and
UINT16 require 2 bytes per value. Maximum size is limited by
available memory. Care should be taken to conserve enough
memory for other operations such as AIN_EF, Lua, Stream etc.

47900 UINT32 R/W

 USER_RAM_FIFO#(0:3)_NUM_BYTES_IN_FIFO
Poll this register to see when new data is available/ready. Each
read of the FIFO buffer decreases this value, and each write to
the FIFO buffer increases this value. At any point in time, the
following equation holds: Nbytes = Nwritten - Nread.

47910 UINT32 R

 USER_RAM_FIFO#(0:3)_EMPTY Write any value
to this register to efficiently empty, flush, or otherwise clear
data from the FIFO.

47930 UINT32 W

Name Start
Address

Type Access

&print=true

USER_RAM_FIFO example script:

aF32_Out= {} --array of 5 values(floats)
aF32_Out[1] = 10.0
aF32_Out[2] = 20.1
aF32_Out[3] = 30.2
aF32_Out[4] = 40.3
aF32_Out[5] = 50.4

aF32_In = {}
numValuesFIO0 = 5
ValueSizeInBytes = 4
numBytesAllocFIFO0 = numValuesFIO0*ValueSizeInBytes
MB.W(47900, 1, numBytesAllocFIFO0) --allocate USER_RAM_FIFO0_NUM_BYTES_IN_FIFO to 20 bytes

19 May 2019

LJ.IntervalConfig(0, 2000)
while true do
 if LJ.CheckInterval(0) then
 --write out to the host with FIFO0
 for i=1, numValuesFIO0 do
 ValOutOfLua = aF32_Out[i]
 numBytesFIFO0 = MB.R(47910, 1)
 if (numBytesFIFO0 < numBytesAllocFIFO0) then
 MB.W(47030, 3, ValOutOfLua) --provide a new array to host
 print ("Next Value FIFO0: ", ValOutOfLua)
 else
 print ("FIFO0 buffer is full.")
 end
 end
 --read in new data from the host with FIFO1
 --Note that an external computer must have previously written to FIFO1
 numBytesFIFO1 = MB.R(47912, 1) --USER_RAM_FIFO1_NUM_BYTES_IN_FIFO
 if (numBytesFIFO1 == 0) then
 print ("FIFO1 buffer is empty.")
 end
 for i=1, ((numBytesFIFO1+1)/ValueSizeInBytes) do
 ValIntoLua = MB.R(47032, 3)
 aF32_In[i] = ValIntoLua
 print ("Next Value FIFO1: ", ValIntoLua)
 end
 end
end

Working with 32-bit Values

Lua is using a single precision float for its data-type. This means that working with 32-bit integer
registers is difficult (see examples below). If any integer exceeds 24-bits (including sign), the
lower bits will be lost. The workaround is to access the Modbus register using two numbers, each
16-bits. Lua can specify the data type for the register being written, so if you are expecting a large
number that will not fit in a float (>24 bits), such as a MAC address, then read or write the value
as a series of 16-bit integers.

If you expect the value to be counting up or down, use MB.RA or MB.RW to access the U32 as a
contiguous set of 4 bytes.

If the value isn't going to increment (e.g. the MAC address) it is permissible to read it in two
separate packets using MB.R .

Read a 32-bit register

--If value is expected to be changing and is >24 bits: Use MB.RA
aU32[1] = 0x00
aU32[2] = 0x00
aU32, error = MB.RA(3000, 0, 2) --DIO0_EF_READ_A. Type is 0 instead of 1

19 May 2019

DIO0_EF_READ_A_MSW = aU32[1]
DIO0_EF_READ_A_LSW = aU32[2]

--If value is constant and is >16,777,216 (24 bits): Use MB.R twice
--Read ETHERNET_MAC (address 60020)
MAC_MSW = MB.R(60020, 0) --Read upper 16 bits. Type is 0 instead of 1
MAC_LSW = MB.R(60021, 0) --Read lower 16 bits.

--If value is <16,777,216 (24 bits): Use MB.R
--Read AIN0_EF_INDEX (address 9000)
AIN0_index = MB.R(9000, 1) --Type can be 1, since the value will be smaller than 24 bits.

Write a 32-bit register

--If value might be changed or incremented by the T7 and is >24 bits: Use MB.WA
aU32[1] = 0xFF2A
aU32[2] = 0xFB5F
error = MB.WA(44300, 0, 2, aU32) --Write DIO0_EF_VALUE_A. Type is 0 instead of 1

--If value is constant and is >24 bits: Use MB.W twice
MB.W(44300, 0, 0xFF2A) --Write upper 16 bits. Type is 0 instead of 1
MB.W(44301, 0, 0xFB5F) --Write lower 16 bits.

--If value is <16,777,216 (24 bits): Use MB.W
--Write DIO0_EF_INDEX (address 44100)
MB.W(44100, 1, 7) --Type can be 1, since the value(7) is smaller than 24 bits.

Loading a Lua Script to a T7 Manually

Load Lua Script Manually To Device

While Kipling handles Lua scripting details easily and automatically, the example below shows
how to load a Lua script to a T7 manually. The general process as well as some example
pseudocode is below:

1. Define or load a Lua Script and make sure a device has been opened.
2. Make sure there is a null-character at the end of the string.
3. Make sure a Lua Script is not currently running. If one is, stop it and wait for it to be

stopped.
4. Write to the "LUA_SOURCE_SIZE" and "LUA_SOURCE_WRITE" registers to instruct the

T7 to allocate space for a script and to transfer it to the device.
5. (Optional) Enable debugging.
6. Instruct the T-Series device to run the loaded Lua Script.

The C example below opens a T7, shuts down any Lua script that may be running, loads the
script, and runs the script.

19 May 2019

https://labjack.com/loading-lua-script-t7-manually
https://labjack.com/support/software/applications/kipling/lua-scripting

const char * luaScript =
 "LJ.IntervalConfig(0, 500)\n"
 "while true do\n"
 " if LJ.CheckInterval(0) then\n"
 " print(LJ.Tick())\n"
 " end\n"
 "end\n"
 "\0";

const unsigned scriptLength = strlen(luaScript) + 1;
// strlen does not include the null-terminating character, so we add 1
// byte to include it.

int handle = OpenOrDie(LJM_dtT7, LJM_ctANY, "LJM_idANY");

// Disable a running script by writing 0 to LUA_RUN twice
WriteNameOrDie(handle, "LUA_RUN", 0);
// Wait for the Lua VM to shut down (and some T7 firmware versions need
// a longer time to shut down than others):
MillisecondSleep(600);
WriteNameOrDie(handle, "LUA_RUN", 0);

// Write the size and the Lua Script to the device
WriteNameOrDie(handle, "LUA_SOURCE_SIZE", scriptLength);
WriteNameByteArrayOrDie(handle, "LUA_SOURCE_WRITE", scriptLength, luaScript);

// Start the script with debug output enabled
WriteNameOrDie(handle, "LUA_DEBUG_ENABLE", 1);
WriteNameOrDie(handle, "LUA_DEBUG_ENABLE_DEFAULT", 1);
WriteNameOrDie(handle, "LUA_RUN", 1);

The above example is valid C code, where the following functions are error-handling functions
that cause the program to exit if an error occurs:

OpenOrDie wraps LJM_Open
WriteNameOrDie wraps LJM_eWriteName
WriteNameByteArrayOrDie wraps LJM_eWriteNameByteArray

The Lua script in the example above is in the form of a C-string, e.g. a string with a null-
terminator as the last byte.

To download a version of the above example, see utilities/lua_script_basic.c, which includes a
function that reads debug data from the T7.

Reading Debug Data/Print Statements

After a script has started (with debugging enabled) any information printed by a lua script can be
read by a user application using the "LUA_DEBUG_NUM_BYTES" and "LUA_DEBUG_DATA"
registers.

25.1 I2C Library [T-Series Datasheet]

19 May 2019

https://labjack.com/support/ljm/users-guide/function-reference/ljmopen
https://labjack.com/support/ljm/users-guide/function-reference/ljmewritename
https://labjack.com/support/software/api/ljm/function-reference/ljmewritenamebytearray
https://labjack.com/support/software/examples/ljm/c

25.1 I2C Library [T-Series Datasheet]
Log in or register to post comments

I2C Library Overview

T7 firmware minimum: 1.0225

The I2C library abstracts most of the Modbus calls needed to run I2C. The abstraction allows
users to focus on I2C rather than Modbus, and reduces the memory requirements of scripts.
Several I2C examples can be found on the I2C Sensor Examples page.

I2C.config

Error = I2C.config(SDA, SCL, Speed, Options, Address)

Sets parameters that are not normally changed. Values set by this function will remain
unchanged until this function is called again or the equivalent Modbus registers are written to.

Parameters:

SDA - DIO pin # that will be used as the I2C data line
SCL - DIO pin # that will be used as the I2C clock line
Speed - See I2C documentation
Options - See I2C documentation
Address - Left Justified

Returns:

Error - standard LabJack T-Series error codes.

I2C.writeRead

RxData, Error = I2C.writeRead(TxData, NumToRead)

This function will first write the data in TxData to the preset address, then will read NumToRead

bytes from that same address.

Parameters:

TxData - This is a Lua table containing the values to be transmitted. The size of the table
determines the number of bytes that will be transmitted.
NumToRead - The number of data bytes to be read.

Returns:

19 May 2019

https://labjack.com/user/login?destination=node/3166%23comment-form
https://labjack.com/user/register?destination=node/3166%23comment-form
https://labjack.com/support/software/applications/t-series/kipling/device-updater
https://labjack.com/support/software/examples/lua-scripting/i2c

RxData - A Lua table of the values read
Error - standard LabJack T-Series error codes.

I2C.read

RxData, Error = I2C.read(NumToRead)

This function will read NumToRead bytes from the preset address.

Parameters:

NumToRead - The number of data bytes to be read.

Returns:

RxData - A Lua table of the values read
Error - standard LabJack T-Series error codes.

I2C.write

Error = I2C.write(TxData)

This function will write the data in TxData to the preset address.

Parameters:

TxData - This is a Lua table containing the values to be transmitted. The size of the table
determines the number of bytes that will be transmitted.

Returns:

Error - standard LabJack T-Series error codes.

I2C.search

AddressList, Error = I2C.search(FirstAddress, LastAddress)

This function will scan the I2C bus addresses are acknowledged. An acknowledged address
means that at least one device is set to that address. Addresses are tested sequentially between
the first and last address parameters.

Parameters:

FirstAddress - The first address to be tested.
LastAddress - The last address to be tested.

19 May 2019

Returns:

AddressList - A Lua table containing all the addresses that responded.
Error - standard LabJack T-Series error codes.

25.2 Bit Library
Log in or register to post comments

Overview

Lua in T-Series devices is based on Lua 5.1.4 which did not include a bitwise library. A subset
of Lua 5.2's Bitwise Library have been added. The name of the library is bin or bit instead of
bit32 . To use the AND function use bin.band instead of bit32.band .

Limitations on T-Series

The T4 and T7 use 32-bit floating point (single precision) numbers. To perform bitwise operations
the 32-bit float is converted into an integer. The bitwise operation is performed. Then the integer
is converted back into a floating point number. When converting to an integer some information
can be lost. Any decimal places will be truncated off and only up to 23-bits will make it to the
integer. This is because 8 bits is used for the exponent and 1 bit for sign.

Functions

Operation of the below functions match the Lua 5.2 bitwise library with the exception of the data
type limitations.

arshift

band

bnot

bor

bxor

lshift

rshift

25.3 LabJack Library
Log in or register to post comments

LabJack's Lua library

19 May 2019

https://labjack.com/user/login?destination=node/3682%23comment-form
https://labjack.com/user/register?destination=node/3682%23comment-form
https://www.lua.org/manual/5.2/manual.html#6.7
https://en.wikipedia.org/wiki/IEEE_754
https://labjack.com/user/login?destination=node/3683%23comment-form
https://labjack.com/user/register?destination=node/3683%23comment-form

The MB and LJ libraries allow access to the Modbus map and provide timing control.

Modbus Address Functions

The following Modbus address functions are similar to eReadAddress, eWriteAddress,
eReadAddressArray, and eWriteAddressArray. The address and data type need to be provided.
The address controls what you want to read or write. The data type controls how the data should
be interpreted. Address and data types can be found in the LabJack Modbus Map and in the
Kipling Register Matrix.

Data Types - Below is a list of data type indices. The data types match those used by the LJM
Library.

0 - unsigned 16-bit integer
1 - unsigned 32-bit integer
2 - signed 32-bit integer
3 - single precision floating point (float)
98 - string
99 - byte - The "byte" dataType is used to pass arrays of bytes in what Lua calls tables

MB.R

value, error = MB.R(Address, dataType)

Modbus read. Reads a single value from a Modbus register. The type can be a u16, u32, a float,
or a string. Any errors encountered will be returned in error.

MB.W

error = MB.W(Address, dataType, value)

Modbus write. Writes a single value to a Modbus register. The type can be a u16, u32, a float, or
a string. Any errors encountered will be returned in error.

MB.WA

error = MB.WA(Address, dataType, nValues, table)

Modbus write array. Reads nValues from the supplied table, interprets them according to the
dataType and writes them as an array to the register specified by Address . The table must be

indexed with numbers from 1 to nValues .

19 May 2019

https://labjack.com/support/software/api/ljm/function-reference/ljmereadaddress
https://labjack.com/support/software/api/ljm/function-reference/ljmewriteaddress
https://labjack.com/support/software/api/ljm/function-reference/ljmereadaddressarray
https://labjack.com/support/software/api/ljm/function-reference/ljmewriteaddressarray
https://labjack.com/support/datasheets/t-series/communication/modbus-map
https://labjack.com/support/software/api/ljm/constants

MB.RA

table, error = MB.RA(Address, dataType, nValues)

Modbus read array. Reads nValues of type dataType from Address and returns the results in a
Lua table. The table is indexed from 1 to nValues .

Shortcut Functions:

The following functions are shortcuts used to gain a small speed advantage over the equivalent
Modbus functions.

LJ.ledtog

LJ.ledtog() --Toggles status LED. Note that reading AINs also toggles the status LED.

LJ.Tick

Ticks = LJ.Tick() --Reads the core timer (1/2 core frequency).

LJ.DIO_D_W

LJ.DIO_D_W(3, 1) --Quickly change FIO3 direction _D_ to output.

LJ.DIO_S_W

LJ.DIO_S_W(3, 0) --Quickly change the state _S_ of FIO3 to 0 (output low)

LJ.DIO_S_R

state = LJ.DIO_S_R(3) -- Quickly read the state _S_ of FIO3

LJ.CheckFileFlag

flag = LJ.CheckFileFlag() and LJ.ClearFileFlag()

19 May 2019

https://labjack.com/support/datasheets/t-series/hardware-overview

LJ.CheckFileFlag and LJ.ClearFileFlag work together to provide an easy way to tell a Lua script to
switch files. This is useful for applications that require continuous logging in a Lua script and on-
demand file access from a host. Since files cannot be opened simultaneously by a Lua script and
a host, the Lua script must first close the active file if the host wants to read file contents. The
host writes a value of 1 to FILE_IO_LUA_SWITCH_FILE, and the Lua script is setup to poll this
parameter using LJ.CheckFileFlag . If the file flag is set, Lua code should switch files:

Example:

fg = LJ.CheckFileFlag() --poll the flag every few seconds
if fg == 1 then
 NumFn = NumFn + 1 --increment filename
 Filename = Filepre..string.format("%02d", NumFn)..Filesuf
 f:close()
 LJ.ClearFileFlag() --inform host that previous file is available.
 f = io.open(Filename, "w") --create or replace a new file
 print ("Command issued by host to create new file")
end

Timing Functions:

LJ.IntervalConfig & LJ.CheckInterval

LJ.IntervalConfig and LJ.CheckInterval work together to make an easy-to-use timing function. Set the
desired interval time with IntervalConfig , then use CheckInterval to watch for timeouts. The interval
period will have some jitter but no overall error. Jitter is typically ±30 µs but can be greater
depending on processor loading. A small amount of error is induced when the processor's core
speed is changed.

Up to 8 different intervals can be active at a time.

LJ.IntervalConfig(handle, time_ms)

Sets an interval timer, starting from the current time.

handle : 0-7. Identifies an interval.

time_ms : Number of milliseconds per interval.

timed_out = LJ.CheckInterval(handle)

handle : 0-7. Identifies an interval.

Returns: 1 if the interval has expired. 0 if not.

19 May 2019

Example:

LJ.IntervalConfig(0, 1000)
while true do
 if LJ.CheckInterval(0) then
 --Code to run once per second here.
 end
end

Lua Performance Functions:

LJ.setLuaThrottle

LJ.setLuaThrottle(newThrottle)

Set the throttle setting. This controls Lua's processor priority. Value is number of Lua instruction
to execute before releasing control to the normal polling loop. After the loop completes Lua will be
given processor time again.

LJ.getLuaThrottle

ThrottleSetting = LJ.getLuaThrottle()

Reads the current throttle setting.

19 May 2019

	25.0 Lua Scripting [T-Series Datasheet]
	Lua Scripting Overview
	Getting Started
	Running a script when the device powers up
	Learning more about Lua
	Lua for T-Series Devices
	Freeing Lua memory
	Limitations of Lua on T-Series Devices
	Lua libraries
	Passing data into/out of Lua
	User RAM Registers
	User RAM FIFO Registers - Advanced

	Working with 32-bit Values
	Loading a Lua Script to a T7 Manually
	Load Lua Script Manually To Device
	Reading Debug Data/Print Statements

	25.1 I2C Library [T-Series Datasheet]
	I2C Library Overview
	I2C.config
	I2C.writeRead
	I2C.read
	I2C.write
	I2C.search

	25.2 Bit Library
	Overview
	Limitations on T-Series
	Functions

	25.3 LabJack Library
	LabJack's Lua library
	Modbus Address Functions
	Shortcut Functions:
	Timing Functions:
	Lua Performance Functions:

